If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-7x-25=0
a = 5; b = -7; c = -25;
Δ = b2-4ac
Δ = -72-4·5·(-25)
Δ = 549
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{549}=\sqrt{9*61}=\sqrt{9}*\sqrt{61}=3\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-3\sqrt{61}}{2*5}=\frac{7-3\sqrt{61}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+3\sqrt{61}}{2*5}=\frac{7+3\sqrt{61}}{10} $
| 9q+8=8+10q-8 | | 8(x+7)-6=90 | | -19u=-20u-12 | | Z-3÷2=z+8÷6 | | -6x+76=-3x+49 | | -7p=-8p-8 | | 7a-5a=-10-14 | | 22.45x=12.95 | | x-6+x-6x=3+10 | | 7+8p=5p-8 | | 5+2(n+1|)=2n | | Z-3÷2=z8÷6 | | 34-13=l/2 | | -7(x–3)=-4 | | -17+7z-17=10z+11 | | 9-9b-12b=-7b+23 | | -6f+9=-7f-1 | | -x-(13+4x)=-3(5-9x)-12 | | .5t^2+2t+16=0 | | y/7+4/7+9/4y-6/4=23 | | 22.45x=18.95 | | 100*q=4.6525 | | x(x-12)=15 | | 8x−8−16x2=0 | | x(x-12(=15 | | x(x-12)-15=0 | | -6x-4=2x+52 | | 56+62+x=58.50 | | 11x-28=-6 | | -2-20p=-18p-18 | | 10-n=90 | | -2x-19=-x-10 |